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Oversampling for ARB with Interpolation Filter

Let WI be the bandwidth of the interpolation filter and WS the bandwidth of the modulated
signal. To avoid cutting the signal with the interpolation filter:

WI ≥ WS (1)

This equation can be written as:

O · fsym

fsample
·WI ≥ WS (2)

with fsample being the sample rate, O the oversampling factor and fsym the sample rate of
the signal. (Remember that fsample = O · fsym) This gives:

O · WI

fsample
≥ WS

fsym
(3)

For a W-CDMA signal with a
√

cos filter, α = 0.22:

WS

fsym
=

1 + α

2
= 0.61 (4)

The interpolation filter has the standardized bandwidth:

WI

fsample
= 0.375 (5)

This gives:

O ≥ 0.61
0.375

= 1.63 (6)
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Effect of non-ideal I/Q Signals

We will discuss this for a single CW carrier with an offset from the RF center frequency, i.e.
at ω0 + ωM .

Ideal I/Q Signal

The ideal I/Q signal for this scenario is:

I(t) = cos ωM t (7)
Q(t) = sinωM t (8)

Then - if we assume that the I/Q modulator itself is ideal - the modulated RF signal
will be:

s(t) = <
{
(I(t) + ıQ(t)) eıω0t

}
= cos ωM t · cos ω0t− sinωM t · sinω0t (9)
= cos (ω0 + ωM ) t

Non-ideal I/Q signal

In reality both the I/Q Modulator and the I/Q input signal are not ideal. This can be
described as small deviations in amplitude and phase of the Q signal:

I(t) = cos ωM t (10)
Q(t) = (1 + ε) sin (ωM t + ϕ) (11)

with ε � 1, ϕ � 1. For ϕ the following approximations are valid:

sinϕ ≈ ϕ, cos ϕ ≈ 1 (12)

ε can result either from different magnitudes for I and Q of the input signal, or from
different gain in the I and Q channel of the modulator. ϕ can be caused by an I/Q modulator
with quadrature error (phase between I and Q channel is not 90 degrees), or by a delay
between I and Q of the input signal. In the second case, the resulting varphi depends on
the frequency of the input signal, according to

Q(t) = (1 + ε) sin (ωM (t + ∆t)) (13)
= (1 + ε) sin (ωM t + ϕ) (14)

with
ϕ = ωM∆t (15)

Expanding Q(t) and using (12) gives:

Q(t) = sin ωM t + ϕ cos ωM t + ε sinωM t + ϕε cos ωM t (16)
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The last term in (16) is of second order nature and can be neglected, so:

Q(t) = sin ωM t + ϕ cos ωM t + ε sinωM t (17)

The RF signal is again calculated with:

s(t) = <
{
(I(t) + ıQ(t)) eıω0t

}
(18)

This leads to the following result :

s(t) = cos (ω0 + ωM ) t

− (ϕ cos ωM t + ε sinωM t) sinω0t (19)

which can be written as:

s(t) = cos (ω0 + ωM ) t

−ϕ

2
[sin (ω0 + ωM ) t + sin (ω0 − ωM ) t] (20)

+
ε

2
[cos (ω0 + ωM ) t− cos (ω0 − ωM ) t]

The first terms in the second and third row can be neglected compared to the undisturbed
signal (first row), especially if the signal is measured with a spectrum analyzer that usually
has a logarithmic scale. Thus:

s(t) = cos (ω0 + ωM ) t− ϕ

2
sin (ω0 − ωM ) t− ε

2
cos (ω0 − ωM ) t

= cos (ω0 + ωM ) t−A sin [(ω0 − ωM ) t + φ] (21)

with:

A =
1
2

√
ε2 + ϕ2 (22)

tanφ =
ϕ

ε
(23)

Note that the disturbances increase with increasing frequency of the input signal if a
delay between I and Q of the input signal is present. With (15) follows

A =
1
2

√
ε2 + ω2

M ·∆t2 (24)

tanφ =
ωM∆t

ε
(25)
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